Practical stability issues in CMAC neural network control systems

نویسندگان

  • Fu-Chuang Chen
  • Chih-Horng Chang
چکیده

AbstructThe cerebellar model articulation controller (CMAC) neural network is a practical tool for improving existing nonlinear control systems. A typical simulation study is used to clearly demonstrate that the CMAC can effectively reduce tracking error, but can also destabilize a control system which is otherwise stable. Then quantitative studies are presented to search for the cause of instability in the CMAC control system. Based on these studies, methods are discussed to improve system stability. Experimental results on controlling a real world system are provided to support the findings in simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

Using Neural Network to Control STATCOM for ImprovingTransient Stability

FACTS technology has considerable applications in power systems, such as; improving the steady stateperformance, damping the power system oscillations, controlling the power flow, and etc. STATCOM is oneof the most important FACTS devices used in the parallel compensation, enhancing transient stability andetc. Since three phase fault is widespread in power systems, in this paper STATCOM is used...

متن کامل

Adaptive Function-Link Fuzzy CMAC Control System Design for MIMO Nonlinear Chaotic Systems

A novel function-link fuzzy cerebelarmodel-articulation-controller (CMAC) is developed in this study. It is a generalization of a fuzzy neural network and of a conventional CMAC. Then, a control system comprising a function-link fuzzy CMAC and a fuzzy compensator is proposed for multi-input multi-output (MIMO) nonlinear chaotic systems. The function-link fuzzy CAMC is used to mimic an ideal con...

متن کامل

Optimal design of CMAC neural-network controller for robot manipulators

This paper is concerned with the application of quadratic optimization for motion control to feedback control of robotic systems using cerebellar model arithmetic computer (CMAC) neural networks. Explicit solutions to the Hamilton–Jacobi–Bellman (H–J–B) equation for optimal control of robotic systems are found by solving an algebraic Riccati equation. It is shown how the CMAC’s can cope with no...

متن کامل

Cmac Neural Network: Modeling, Simulation, and a Comparative Study of Learning Algorithms

Cerebellar Model Articulation Controller Neural Networks (CMAC NN) is one of the intelligent systems used for modeling, identification, classification, and controlling of nonlinear systems. In this paper, the mathematical model of CMAC is presented. CMAC is implemented using Simulink environment and its parameters are tuned to get the best CMAC control action. Three different learning algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Contr. Sys. Techn.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1996